Large deviations for sums of partly dependent random variables
نویسندگان
چکیده
منابع مشابه
Large deviations for sums of partly dependent random variables
We use and extend a method by Hoeffding to obtain strong large deviation bounds for sums of dependent random variables with suitable dependency structure. The method is based on breaking up the sum into sums of independent variables. Applications are given to U -statistics, random strings and random graphs.
متن کاملOn the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کاملStrong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملOn large deviations for sums of independent random variables
This paper considers large deviation results for sums of independent random variables, generalizing the result of Petrov (1968) by using a weaker and more natural condition on bounds of the cumulant generating functions of the sequence of random variables. MSC 60F10, 60G50, 62E20.
متن کاملOn the Complete Convergence ofWeighted Sums for Dependent Random Variables
We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Random Structures & Algorithms
سال: 2004
ISSN: 1042-9832
DOI: 10.1002/rsa.20008